Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Glob Adv Health Med ; 10: 21649561211056597, 2021.
Article in English | MEDLINE | ID: covidwho-1533226

ABSTRACT

While COVID-19 has killed millions of people globally, its lasting effects on the health and well-being of entire populations are just becoming clear. As many as 30% of those diagnosed with COVID-19 report continuing health-related problems, regardless of the severity of the initial infection. Given the infection rate in the world, that translates to between 5.4 and 17.9 million globally; about 700 000 in the US. The syndrome goes by many names; here we call it "long COVID." Patients experience a wide range of symptoms, including serious organ system effects such as pulmonary fibrosis, myocarditis, new diabetes diagnoses, stroke, and other cerebrovascular events. They also experience ongoing pain, fatigue, and cognitive dysfunction. We suggest here that these patients require an integrative health approach, one that combines traditional medical management, non-pharmacological approaches, and behavior and lifestyle changes. Such an approach has been shown to be beneficial in other chronic illnesses such as fibromyalgia, chronic fatigue syndrome, and post-Lyme disease.

2.
J Virol ; 95(14): e0013021, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1203943

ABSTRACT

The nasal mucosa constitutes the primary entry site for respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the imbalanced innate immune response of end-stage coronavirus disease 2019 (COVID-19) has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here, we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with a rapid increase in tissue-associated viral subgenomic mRNA and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon-stimulated genes, cytokines, and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tracts that are specific to SARS-CoV-2. The studies shed light on the role of the nasal mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19. IMPORTANCE In order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here, we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues infected in parallel with SARS-CoV-2 and influenza virus, we found distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal mucosal infection model can be employed to assess the impact of viral evolutionary changes and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


Subject(s)
COVID-19/immunology , Immunity, Innate , Lung/immunology , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Animals , COVID-19/pathology , Chlorocebus aethiops , Dogs , Humans , Influenza, Human/immunology , Influenza, Human/pathology , Lung/pathology , Madin Darby Canine Kidney Cells , Nasal Mucosa/pathology , Nasal Mucosa/virology , Organ Specificity/immunology , RNA, Messenger/immunology , RNA, Viral/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL